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ABSTRACTOne of the major appli
ations of data mining is in helping
ompanies determine whi
h potential 
ustomers to marketto. If the expe
ted pro�t from a 
ustomer is greater than the
ost of marketing to her, the marketing a
tion for that 
us-tomer is exe
uted. So far, work in this area has 
onsideredonly the intrinsi
 value of the 
ustomer (i.e, the expe
tedpro�t from sales to her). We propose to model also the
ustomer's network value: the expe
ted pro�t from sales toother 
ustomers she may in
uen
e to buy, the 
ustomersthose may in
uen
e, and so on re
ursively. Instead of view-ing a market as a set of independent entities, we view it as aso
ial network and model it as a Markov random �eld. Weshow the advantages of this approa
h using a so
ial networkmined from a 
ollaborative �ltering database. Marketingthat exploits the network value of 
ustomers|also knownas viral marketing|
an be extremely e�e
tive, but is still abla
k art. Our work 
an be viewed as a step towards pro-viding a more solid foundation for it, taking advantage ofthe availability of large relevant databases.
Categories and Subject DescriptorsH.2.8 [Database Management℄: Database Appli
ations|data mining ; I.2.6 [Arti�
ial Intelligen
e℄: Learning|in-du
tion; I.5.1 [Pattern Re
ognition℄: Models|statisti
al ;J.4 [Computer Appli
ations℄: So
ial and Behavioral S
i-en
es
General TermsMarkov random �elds, dependen
y networks, dire
t market-ing, viral marketing, so
ial networks, 
ollaborative �ltering
1. INTRODUCTIONDire
t marketing is one of the major appli
ations of KDD.In 
ontrast to mass marketing, where a produ
t is promotedindis
riminately to all potential 
ustomers, dire
t marketingattempts to �rst sele
t the 
ustomers likely to be pro�table,
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and market only to those [19℄. Data mining plays a key rolein this pro
ess, by allowing the 
onstru
tion of models thatpredi
t a 
ustomer's response given her past buying behaviorand any available demographi
 information [29℄. When su
-
essful, this approa
h 
an signi�
antly in
rease pro�ts [34℄.One basi
 limitation of it is that it treats ea
h 
ustomeras making a buying de
ision independently of all other 
us-tomers. In reality, a person's de
ision to buy a produ
t isoften strongly in
uen
ed by her friends, a
quaintan
es, busi-ness partners, et
. Marketing based on su
h word-of-mouthnetworks 
an be mu
hmore 
ost-e�e
tive than the more 
on-ventional variety, be
ause it leverages the 
ustomers them-selves to 
arry out most of the promotional e�ort. A 
lassi
example of this is the Hotmail free email servi
e, whi
h grewfrom zero to 12 million users in 18 months on a minus
uleadvertising budget, thanks to the in
lusion of a promotionalmessage with the servi
e's URL in every email sent usingit [23℄. Competitors using 
onventional marketing fared farless well. This type of marketing, dubbed viral marketingbe
ause of its similarity to the spread of an epidemi
, is nowused by a growing number of 
ompanies, parti
ularly in theInternet se
tor. More generally, network e�e
ts (known inthe e
onomi
s literature as network externalities) are of 
rit-i
al importan
e in many industries, in
luding notably thoseasso
iated with information goods (e.g., software, media,tele
ommuni
ations, et
.) [38℄. A te
hni
ally inferior prod-u
t 
an often prevail in the marketpla
e if it better leveragesthe network of users (for example, VHS prevailed over Betain the VCR market).Ignoring network e�e
ts when de
iding whi
h 
ustomersto market to 
an lead to severely suboptimal de
isions. Inaddition to the intrinsi
 value that derives from the pur-
hases she will make, a 
ustomer e�e
tively has a networkvalue that derives from her in
uen
e on other 
ustomers. A
ustomer whose intrinsi
 value is lower than the 
ost of mar-keting may in fa
t be worth marketing to when her networkvalue is 
onsidered. Conversely, marketing to a pro�table
ustomer may be redundant if network e�e
ts already makeher very likely to buy. However, quantifying the networkvalue of a 
ustomer is at �rst sight an extremely diÆ
ult un-dertaking, and to our knowledge has never been attempted.A 
ustomer's network value depends not only on herself,but potentially on the 
on�guration and state of the entirenetwork. As a result, marketing in the presen
e of strongnetwork e�e
ts is often a hit-and-miss a�air. Many startup
ompanies invest heavily in 
ustomer a
quisition, on the ba-sis that this is ne
essary to \seed" the network, only to fa
ebankrupt
y when the desired network e�e
ts fail to materi-
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alize. On the other hand, some 
ompanies (like Hotmail andthe ICQ instant messenger servi
e) are mu
h more su

essfulthan expe
ted. A sounder basis for a
tion in network-drivenmarkets would thus have the potential to greatly redu
e therisk of 
ompanies operating in them.We believe that, for many of these markets, the growthof the Internet has led to the availability of a wealth ofdata from whi
h the ne
essary network information 
an bemined. In this paper we propose a general framework fordoing this, and for using the results to optimize the 
hoi
eof whi
h 
ustomers to market to, as well as estimating what
ustomer a
quisition 
ost is justi�ed for ea
h. Our solu-tion is based on modeling so
ial networks as Markov ran-dom �elds, where ea
h 
ustomer's probability of buying is afun
tion of both the intrinsi
 desirability of the produ
t forthe 
ustomer and the in
uen
e of other 
ustomers. We thenfo
us on 
ollaborative �ltering databases as an instan
e of adata sour
e for mining networks of in
uen
e from. We applyour framework to the domain of marketing motion pi
tures,using the publi
ly-available Ea
hMovie database of 2.8 mil-lion movie ratings, and demonstrate its advantages relativeto traditional dire
t marketing. The paper 
on
ludes with adis
ussion of related work and a summary of 
ontributionsand future resear
h dire
tions.
2. MODELING MARKETS AS SOCIAL

NETWORKSConsider a set of n potential 
ustomers, and let Xi be aBoolean variable that takes the value 1 if 
ustomer i buys theprodu
t being marketed, and 0 otherwise. In what followswe will often slightly abuse language by taking Xi to \be"the ith 
ustomer. Let the neighbors of Xi be the 
ustomerswhi
h dire
tly in
uen
e Xi: Ni = fXi;1; : : : ; Xi;nig � X�fXig, where X = fX1; : : : ; Xng. In other words, Xi is in-dependent of X � Ni � fXig given Ni. Let Xk (Xu) bethe 
ustomers whose value (i.e., whether they have boughtthe produ
t) is known (unknown), and let Nui = Ni \Xu.Assume the produ
t is des
ribed by a set of attributes Y =fY1; : : : ; Ymg. Let Mi be a variable representing the mar-keting a
tion that is taken for 
ustomer i. For example, Mi
ould be a Boolean variable, with Mi = 1 if the 
ustomer iso�ered a given dis
ount, andMi = 0 otherwise. Alternately,Mi 
ould be a 
ontinuous variable indi
ating the size of thedis
ount o�ered, or a nominal variable indi
ating whi
h ofseveral possible a
tions is taken. Let M = fM1; : : : ;Mng.Then, for all Xi 62 Xk,P (XijXk;Y;M)= XC(Nui )P (Xi;Nui jXk;Y;M)= XC(Nui )P (XijNui ;Xk;Y;M)P (Nui jXk;Y;M)= XC(Nui )P (XijNi;Y;M)P (Nui jXk;Y;M) (1)where C(Nui ) is the set of all possible 
on�gurations of theunknown neighbors of Xi (i.e., the set of all possible 2jNui jassignments of 0 and 1 to them). Following Pelkowitz [33℄,we approximate P (Nui jXk;Y;M) by its maximum entropyestimate given the marginals P (Xj jXk;Y;M), for Xj 2 Nui .

This yields1P (XijXk;Y;M)= XC(Nui )P (XijNi;Y;M) YXj2Nui P (Xj jXk;Y;M) (2)The set of variables Xu, with joint probability 
onditionedon Xk, Y and M des
ribed by Equation 2, is an instan
eof a Markov random �eld [2, 25, 7℄. Be
ause Equation 2expresses the probabilities P (XijXk;Y;M) as a fun
tion ofthemselves, it 
an be applied iteratively to �nd them, start-ing from a suitable initial assignment. This pro
edure isknown as relaxation labeling, and is guaranteed to 
onvergeto lo
ally 
onsistent values as long as the initial assignmentis suÆ
iently 
lose to them [33℄. A natural 
hoi
e for initial-ization is to use the network-less probabilities P (XijY;M).Noti
e that the number of terms in Equation 2 is expo-nential in the number of unknown neighbors of Xi. If thisnumber is small (e.g., 5), this should not be a problem; oth-erwise, an approximate solution is ne
essary. A standardmethod for this purpose is Gibbs sampling [16℄. An alterna-tive based on an eÆ
ient k-shortest-path algorithm is pro-posed in Chakrabarti et al. [6℄.Given Ni and Y, Xi should be independent of the mar-keting a
tions for other 
ustomers. Assuming a naive Bayesmodel for Xi as a fun
tion of Ni, Y1; : : : ; Ym and Mi [11℄,P (XijNi;Y;M)= P (XijNi;Y;Mi)= P (Xi)P (Ni;Y;MijXi)P (Ni;Y;Mi)= P (Xi)P (NijXi)P (MijXi)P (Ni;Y;M) mYk=1P (YkjXi)= P (XijNi)P (MijXi)P (Y;MijNi) mYk=1P (YkjXi) (3)where P (Y;MijNi) = P (Y;MijXi = 1)P (Xi = 1jNi) +P (Y;MijXi = 0)P (Xi = 0jNi). The 
orresponding net-work-less probabilities are P (XijY;M) = P (Xi)P (MijXi)Qmk=1 P (YkjXi)=P (Y;Mi). Given Equation 3, in order to
ompute Equation 2 we need to know only the followingprobabilities, sin
e all terms redu
e to them: P (XijNi),P (Xi), P (MijXi), and P (YkjXi) for all k. With the ex
ep-tion of P (XijNi), all of these are easily obtained in one passthrough the data by 
ounting (assuming the Yk are dis
reteor have been pre-dis
retized; otherwise a univariate model
an be �t for ea
h numeri
 Yk). The form of P (XijNi) de-pends on the me
hanism by whi
h 
ustomers in
uen
e ea
hother, and will vary from appli
ation to appli
ation. In thenext se
tion we fo
us on the parti
ular 
ase where X is theset of users of a 
ollaborative �ltering system.For simpli
ity, assume that M is a Boolean ve
tor (i.e.,only one type of marketing a
tion is being 
onsidered, su
has o�ering the 
ustomer a given dis
ount). Let 
 be the
ost of marketing to a 
ustomer (assumed 
onstant), r0 bethe revenue from selling the produ
t to the 
ustomer if nomarketing a
tion is performed, and r1 be the revenue if mar-keting is performed. r0 and r1 will be the same unless the1The same result 
an be obtained by assuming that the Xjare independent given Xk, Y and M.
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marketing a
tion in
ludes o�ering a dis
ount. Let f1i (M) bethe result of setting Mi to 1 and leaving the rest of M un-
hanged, and similarly for f0i (M). The expe
ted lift in pro�tfrom marketing to 
ustomer i in isolation (i.e., ignoring here�e
t on other 
ustomers) is then [8℄ELPi(Xk;Y;M) =r1P (Xi=1jXk;Y; f1i (M))�r0P (Xi=1jXk;Y; f0i (M))� 
 (4)Let M0 be the null ve
tor (all zeros). The global lift inpro�t that results from a parti
ular 
hoi
e M of 
ustomersto market to is thenELP (Xk;Y;M) =nXi=1 riP (Xi=1jXk;Y;M)�r0 nXi=1 P (Xi=1jXk;Y;M0)� jMj
 (5)where ri = r1 if Mi = 1, ri = r0 if Mi = 0, and jMj isthe number of 1's in M. Our goal is to �nd the assignmentof values to M that maximizes ELP. In general, �nding theoptimal M requires trying all possible 
ombinations of as-signments to its 
omponents. Be
ause this is intra
table, wepropose using one of the following approximate pro
eduresinstead:Single pass For ea
h i, setMi = 1 if ELP (Xk;Y; f1i (M0))> 0, and set Mi = 0 otherwise.Greedy sear
h SetM =M0. Loop through theMi's, set-ting ea
h Mi to 1 if ELP (Xk;Y; f1i (M)) > ELP (Xk;Y;M). Continue looping until there are no 
hangesin a 
omplete s
an of the Mi's. The key di�eren
e be-tween this method and the previous one is that herelater 
hanges to the Mi's are evaluated with earlier
hanges to the Mi's already in pla
e, while in the pre-vious method all 
hanges are evaluated with respe
tto M0.Hill-
limbing sear
h Set M = M0. Set Mi1 = 1, wherei1 = argmaxifELP (Xk;Y; f1i (M))g. Now set Mi2 =1, where i2 = argmaxifELP (Xk;Y; f1i (f1i1(M)))g. Re-peat until there is no i for whi
h setting Mi = 1 in-
reases ELP.Ea
h method is 
omputationally more expensive than theprevious one, but potentially leads to a better solution forM (i.e., produ
es a higher ELP).The intrinsi
 value of a 
ustomer is given by Equation 4.The total value of a 
ustomer (intrinsi
 plus network) is theELP obtained by marketing to her: ELP (Xk;Y; f1i (M))�ELP (Xk;Y; f0i (M)). The 
ustomer's network value is thedi�eren
e between her total and intrinsi
 values. Noti
ethat, in general, this value will depend on whi
h other 
us-tomers are being marketed to, and whi
h others have alreadybought the produ
t.Suppose now that Mi is a 
ontinuous variable, that we
an 
hoose to in
ur di�erent marketing 
osts for di�erent
ustomers, and that there is a known relationship between
i and P (XijMi). In other words, suppose that we 
an in-
rease a 
ustomer's probability of buying by in
reasing the

amount spent in marketing to her, and that we 
an estimatehow mu
h needs to be spent to produ
e a given in
rease inbuying probability. The optimal 
ustomer a
quisition 
ostfor 
ustomer i is then the value of 
i that maximizes her to-tal value ELP (Xk;Y; f1i (M))�ELP (Xk;Y; f0i (M)), withjMj
 repla
ed byPni=1 
i in Equation 5.
3. MINING SOCIAL NETWORKS FROM

COLLABORATIVE FILTERING
DATABASESArguably, a de
ade ago it would have been diÆ
ult tomake pra
ti
al use of a model like Equation 2, be
auseof the la
k of data to estimate the in
uen
e probabilitiesP (XijNi). Fortunately, the explosion of the Internet hasdrasti
ally 
hanged this. People in
uen
e ea
h other online(and leave a re
ord of it) through postings and responses tonewsgroups, review and knowledge-sharing sites like epin-ions.
om, 
hat rooms and IRC, online game playing andMUDs, peer-to-peer networks, email, interlinking of Webpages, et
. In general, any form of online 
ommunity is apotentially ri
h sour
e of data for mining so
ial networksfrom. (Of 
ourse, mining these sour
es is subje
t to theusual priva
y 
on
erns; but many sour
es are publi
 infor-mation.) In this paper we will 
on
entrate on a parti
ularlysimple and potentially very e�e
tive data sour
e: the 
ol-laborative �ltering systems widely used by e-
ommer
e sites(e.g., amazon.
om) to re
ommend produ
ts to 
onsumers.In a 
ollaborative �ltering system, users rate a set of items(e.g., movies, books, newsgroup postings, Web pages), andthese ratings are then used to re
ommend other items theuser might be interested in. The ratings may be impli
it(e.g., the user did or did not buy the book) or expli
it (e.g.,the user gives a rating of zero to �ve stars to the book,depending on how mu
h she liked it). Many algorithms havebeen proposed for 
hoosing whi
h items to re
ommend giventhe in
omplete matrix of ratings (see, for example, Breeseet al. [3℄). The most widely used method, and the one thatwe will assume here, is the one proposed in GroupLens, theproje
t that originally introdu
ed quantitative 
ollaborative�ltering [35℄. The basi
 idea in this method is to predi
t auser's rating of an item as a weighted average of the ratingsgiven by similar users, and then re
ommend items with highpredi
ted ratings. The similarity of a pair of users (i; j) ismeasured using the Pearson 
orrelation 
oeÆ
ient:Wij = Pk(Rik �Ri)(Rjk �Rj)qPk(Rik �Ri)2Pk(Rjk �Rj)2 (6)where Rik is user i's rating of item k, Ri is the mean of useri's ratings, likewise for j, and the summations and meansare 
omputed over the items k that both i and j have rated.Given an item k that user i has not rated, her rating of it isthen predi
ted asR̂ik = Ri + � XXj2NiWji(Rjk �Rj) (7)where � = 1=PXj2Ni jWij j is a normalization fa
tor, andNi is the set of ni users most similar to i a

ording toEquation 6 (her neighbors). In the limit, Ni 
an be theentire database of users, but for reasons of noise robustnessand 
omputational eÆ
ien
y it is usually mu
h smaller (e.g.,
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ni = 5). For neighbors that did not rate the item, Rjk is setto Rj .The key advantage of a 
ollaborative �ltering databaseas a sour
e for mining a so
ial network for viral marketingis that the me
hanism by whi
h individuals in
uen
e ea
hother is known and well understood: it is the 
ollaborative�ltering algorithm itself. User i in
uen
es user j when jsees a re
ommendation that is partly the result of i's rating.Assuming i and j do not know ea
h other in real life (whi
h,given that they 
an be anywhere in the world, is likely tobe true), there is no other way they 
an substantially in-
uen
e ea
h other. Obviously, a user is subje
t to manyin
uen
es besides that of the 
ollaborative �ltering system(in
luding the in
uen
e of people not on the system), butthe un
ertainty 
aused by those in
uen
es is en
apsulatedto a �rst degree of approximation in P (XijR̂ik), the proba-bility that a user will pur
hase an item given the rating thesystem predi
ts for her. It is also reasonable to assume thatan individual would not 
ontinue to use a 
ollaborative �l-tering system if she did not �nd its re
ommendations useful,and therefore that there is a 
ausal 
onne
tion (rather thansimply a 
orrelation) between the re
ommendations re
eivedand the pur
hases made.To extra
t a so
ial network model from a 
ollaborative �l-tering database, we view an item as a random sample fromthe spa
e (X;Y), where Y is a set of properties of the item(assumed available), and Xi represents whether or not useri rated the item. For simpli
ity, we assume that if a userrates an item then she bought it, and vi
e-versa; removingthis assumption would be straightforward, given the relevantdata. The prior P (Xi) 
an then be estimated simply as thefra
tion of items rated by user i. The 
onditional proba-bilities P (YkjXi) 
an be obtained by 
ounting the numberof o

urren
es of ea
h value of Yk (assumed dis
rete or pre-dis
retized) with ea
h value of Xi. Estimating P (MijXi)requires a data 
olle
tion phase in whi
h users to marketto are sele
ted at random and their responses are re
orded(both when being marketed to and not). P (MijXi) 
an beestimated individually for ea
h user, or (requiring far lessdata) as the same for all users, as done in Chi
kering andHe
kerman [8℄. If the ne
essary data is not available, wepropose setting P (MijXi) using prior knowledge about thee�e
tiveness of the type of marketing being 
onsidered, givenany demographi
 information available about the users. (Itis also advisable to test the sensitivity of the out
ome toP (MijXi) by trying a range of values.)The set of neighbors Ni for ea
h i is the set of neighborsof the 
orresponding user in the 
ollaborative �ltering sys-tem. If the ratings are impli
it (i.e., yes/no), a model forP (XijNi) (e.g., a naive Bayes model, as we have assumedfor P (YkjXi)) 
an be �t dire
tly to the observed X ve
tors.If expli
it ratings are given (e.g., zero to �ve stars), thenwe know that Xi depends on Ni solely through R̂i, Xi'spredi
ted rating a

ording to Equation 7 (for readability,we will omit the item indexes k). In other words, Xi is
onditionally independent of Ni given R̂i. If the neighbors'ratings are known, R̂i is a deterministi
 fun
tion of Ni givenby Equation 7, with Xj 2 Ni determining whether the 
on-tribution of the jth neighbor is Rj �Rj or 0 (see dis
ussionfollowing Equation 7). If the ratings of some or all neigh-bors are unknown (i.e., the ratings that they would give ifthey were to rate the item), we 
an estimate them as theirexpe
ted values given the item's attributes. In other words,

the 
ontribution of a neighbor with unknown rating will beE[Rj jY℄ � Rj . P (Rj jY) 
an be estimated using a naiveBayes model (assuming Rj only takes on a small number ofdi�erent values, whi
h is usually the 
ase). Let R̂i(Ni) bethe value of R̂i obtained in this way. Then, treating this asa deterministi
 value,P (XijNi) = Z RmaxRmin P (XijR̂i;Ni) dP (R̂ijNi)= P (XijR̂i(Ni);Ni) = P (XijR̂i(Ni)) (8)All that remains is to estimate P (XijR̂i). This 
an beviewed as a univariate regression problem, with R̂i as theinput and P (XijR̂i) as the output. The most appropriatefun
tional form for this regression will depend on the ob-served data. In the experiments des
ribed below, we useda pie
ewise-linear model for P (XijR̂i), obtained by dividingR̂i's range into bins, 
omputing the mean R̂i and P (XijR̂i)for ea
h bin, and then estimating P (XijR̂i) for an arbitraryR̂i by interpolating linearly between the two nearest means.Given a small number of bins, this approa
h 
an �t a widevariety of observations relatively well, with little danger ofover�tting.Noti
e that the te
hni
al de�nition of a Markov random�eld requires that the neighborhood relation be symmetri
(i.e., if i is a neighbor of j, then j is also a neighbor of i),but in a 
ollaborative �ltering system this may not be the
ase. The probabilisti
 model obtained from it in the waydes
ribed will then be an instan
e of a dependen
y network,a generalization of Markov random �elds re
ently proposedby He
kerman et al. [17℄. He
kerman et al. show that Gibbssampling applied to su
h a network de�nes a joint distribu-tion from whi
h all probabilities of interest 
an be 
omputed.While in our experimental studies Gibbs sampling and re-laxation labeling produ
ed very similar results, the formalderivation of the properties of dependen
y networks underrelaxation labeling is a matter for future resear
h.
4. EMPIRICAL STUDYWe have applied the methodology des
ribed in the previ-ous se
tions to the problem of marketing motion pi
tures,using the Ea
hMovie 
ollaborative �ltering database (www.-resear
h.
ompaq.
om/sr
/ea
hmovie/). Ea
hMovie 
ontains2.8 million ratings of 1628 movies by 72916 users, gath-ered between January 29, 1996 and September 15, 1997 bythe eponymous re
ommendation site, whi
h was run by theDEC (now Compaq) Systems Resear
h Center. Ea
hMovieis publi
ly available, and has be
ome a standard databasefor evaluating 
ollaborative �ltering systems (e.g., Breese atal. [3℄). Motion pi
ture marketing is an interesting appli
a-tion for the te
hniques we propose be
ause the su

ess of amovie is known to be strongly driven by word of mouth [12℄.Ea
hMovie is 
omposed of three databases: one 
ontain-ing the ratings, one 
ontaining demographi
 informationabout the users (whi
h we did not use), and one 
ontain-ing information about the movies. The latter in
ludes themovie's title, studio, theater and video status (old or 
ur-rent), theater and video release dates, and ten Boolean at-tributes des
ribing the movie's genre (a
tion, animation,art/foreign, 
lassi
, 
omedy, drama, family, horror, roman
e,and thriller; a movie 
an have more than one genre). Themovie's URL in the Internet Movie Database (www.imdb.-
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om) is also in
luded. This 
ould be used to augment themovie des
ription with attributes extra
ted from the IMDB;we plan to do so in the future. The ratings database 
ontainsan entry for ea
h movie that ea
h user rated, on a s
ale ofzero to �ve stars, and the time and date on whi
h the ratingwas generated.The 
ollaborative �ltering algorithm used in Ea
hMoviehas not been published, but we will assume that the al-gorithm des
ribed in the previous se
tion is a reasonableapproximation to it. This assumption is supported by theobservation that, despite their variety in form, all the many
ollaborative �ltering algorithms proposed attempt to 
ap-ture essentially the same information (namely, 
orrelationsbetween users).The meaning of the variables in the Ea
hMovie domainis as follows: Xi is whether person i saw the movie being
onsidered. Y 
ontains the movie attributes. Ri is the rat-ing (zero to �ve stars) given to the movie by person i. Forsimpli
ity, throughout this se
tion we assume the R̂i's are
entered at zero (i.e., Ri has been subtra
ted from R̂i; seeEquation 7).
4.1 The ModelWe used Y = fY1; Y2; : : : ; Y10g, the ten Boolean moviegenre attributes. Thus P (YjXi) was in essen
e a model ofa user's genre preferen
es, and during inferen
e two movieswith the same genre attributes were indistinguishable. Thenetwork 
onsisted of all people who had rated at least tenmovies, and whose ratings had non-zero standard deviation(otherwise they 
ontained no useful information). Neigh-bor weights Wij were determined using a modi�ed Pear-son 
orrelation 
oeÆ
ient, whi
h penalized the 
orrelationby 0.05 for ea
h movie less than ten that both Xi and Xjhad rated. This 
orre
tion is 
ommonly used in 
ollabo-rative �ltering systems to avoid 
on
luding that two usersare very highly 
orrelated simply be
ause they rated veryfew movies in 
ommon, and by 
han
e rated them similarly[18℄. The neighbors of Xi were the Xj 's for whi
h Wji washighest. With ni=5, a number we believe provides a reason-able tradeo� between model a

ura
y and speed, the aver-age Wji of neighbors was 0.91. Repeating the experimentsdes
ribed below with ni = 10 and ni = 20 produ
ed no sig-ni�
ant 
hange in model a

ura
y, and small improvementsin pro�t. Interestingly, the network obtained in ea
h 
asewas 
ompletely 
onne
ted (i.e., it 
ontained no isolated sub-graphs).As dis
ussed above, the 
al
ulation of P (XijXk;Y;M)requires estimating P (XijR̂i), P (Xi), P (MijXi), P (YkjXi),and P (RijY). P (Xi) is simply the fra
tion of movies Xirated. We used a naive Bayes model for P (Rj jY). P (YkjXi),P (Rj jY), and P (Xi) were all smoothed using anm-estimate[5℄ with m=1 and the population average as the prior. Wedid not know the true values of P (MijXi). We expe
tedmarketing to have a larger e�e
t on a 
ustomer who wasalready in
lined to see the movie, and thus we set the prob-abilities P (MijXi) so as to obtainP (Xi = 1jMi = 1) = minf�P (Xi = 1jMi = 0); 1g (9)where � > 1 is a parameter that we varied in the experi-ments des
ribed below.2 As des
ribed in the previous se
-2To fully spe
ify P (MijXi) we used the additional 
onstraintthat P (Y;Mi = 1) = P (Y;Mi = 0). With the values of �
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Figure 1: Empiri
al distribution of R̂i and Xi givenR̂i.tion, P (XijR̂i) was modeled using a pie
ewise linear fun
-tion. We measured P (XijR̂i) for ea
h of nine bins, whoseboundaries were �5.0, �2.0, �1.0, �0.5, �0.1, 0.1, 0.5, 1.0,2.0, and 5.0. Note that while Ri must be between 0 and 5,R̂i is a weighted sum of the neighbors' di�eren
e from theiraverage, and thus may range from �5 to 5. We also had azero-width bin lo
ated at R̂i = 0. Movies were seen with lowprobability (1{5%), and thus there was a high probabilitythat a movie had not been rated by any of Xi's neighbors. Inthe absen
e of a rating, a neighbor's 
ontribution to R̂i waszero. 84% of the samples fell into this zero bin. Bin bound-aries were 
hosen by examination of the distribution of datain the training set, shown in Figure 1. R̂i was unlikely todeviate far from 0, for the reasons given above. We usednarrow bins near R̂i = 0 to obtain higher a

ura
y in thisarea, whi
h 
ontained a majority of the data (96.4% of thedata fell between �0.5 and 0.5). To 
ombat data sparseness,both P (XijR̂i) and the per-bin mean R̂i were smoothed forea
h bin using an m-estimate with m=1 and the populationaverage as the prior.Initially, we expe
ted P (XijR̂i) to in
rease monotoni
allywith R̂i. The a
tual shape, shown in Figure 1, shows in-
reasing P (XijR̂i) as R̂i moves signi�
antly away from 0in either dire
tion. This shape is due to a 
orrelation be-tween jR̂ij and the popularity of a movie: for a popularmovie, R̂i is more likely to deviate further from zero andXi is more likely to be 1. Note, however, that P (XijR̂i)is indeed monotoni
ally in
reasing in the [�0:1; 0:1℄ inter-val, where the highest density of ratings is. Furthermore,E[P (XijR̂i > 0)℄ = 0:203 > 0:176 = E[P (XijR̂i < 0)℄.
4.2 The DataWhile the Ea
hMovie database is large, it has problemswhi
h had to be over
ome. The movies in the databasewhi
h were in theaters before January 1996 were drawnfrom a long time period, and so tended to be very wellknown movies. Over 75% (2.2 million) of the ratings wereon these movies. In general, the later a movie was released,the fewer ratings and thus the less information we had forit. We divided the database into a training set 
onsistingof all ratings re
eived through September 1, 1996, and atest set 
onsisting of all movies released between September1, 1996 and De
ember 31, 1996, with the ratings re
eivedwe used it was always possible to satisfy Equation 9 and this
onstraint simultaneously.
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for those movies any time between September 1, 1996 andthe end of the database. Be
ause there was su
h a largedi�eren
e in average movie popularity between the earlymovies and the later ones, we further divided the trainingset into two subsets: Sold, 
ontaining movies released beforeJanuary 1996 (1.06 million votes), and Sre
ent, 
ontainingmovies released between January and September 1996 (90kvotes). The average movie viewership of Sold was 5.6%, ver-sus 1.4% for Sre
ent. Sin
e 92% of the training data was inSold, we 
ould not a�ord to ignore it. However, in terms ofthe probability that someone rates a movie, the test period
ould be expe
ted to be mu
h more similar to Sre
ent. Thus,we trained using all training data, then res
aled P (Xi) andP (XijR̂i) using Sre
ent, and smoothed these values usingan m-estimate with m=1 and the distribution on the fulltraining set as the prior.Many movies in the test set had very low probability (36%were viewed by 10 people or less, and 48% were viewed by20 people or less, out of over 20748 people3). Sin
e it is notpossible to model su
h low probability events with any reli-ability, we removed all movies whi
h were viewed by fewerthan 1% of the people. This left 737,579 votes over 462movies for training, and 3912 votes over 12 movies for test-ing. P (Y jXi), P (RijY), P (Xi), and P (XijR̂i) were learnedusing only these movies. However, be
ause the Ea
hMovie
ollaborative �ltering system presumably used all movies,we used all movies when simulating it (i.e., when 
omputingsimilarities (Equation 6), sele
ting neighbors, and predi
tingratings (Equation 7)).A majority of the people in the Ea
hMovie database pro-vided ratings on
e, and never returned. These people af-fe
ted the predi
ted ratings R̂i seen by users of Ea
hMovie,but be
ause they never returned to the system for queries,their movie viewing 
hoi
es were not a�e
ted by their neigh-bors. We 
all these people ina
tive. A person was marked asina
tive if there were more than � days between her last rat-ing and the end of the training period. In our tests, we useda � of 60, whi
h resulted in 11163 ina
tive people. Ina
tivepeople 
ould be marketed to, sin
e they were presumablystill wat
hing movies; they were just not reporting ratingsto Ea
hMovie. If an ina
tive person was marketed to, shewas assumed to have no e�e
t on the rest of the network.
4.3 Inference and SearchInferen
e was performed by relaxation labeling, as de-s
ribed in Se
tion 2. This involved iteratively re-estimatingprobabilities until they all 
onverged to within a threshold 
.(We used 
 = 10�5.) We maintained a queue of nodes whoseprobabilities needed to be re-estimated, whi
h initially 
on-tained all nodes in the network. Ea
h Xi was removed fromthe queue in turn, and its probability was re-estimated usingEquation 2. If P (XijXk;Y;M) had 
hanged by more than
, all nodes that Xi was a neighbor of that were not alreadyin the queue were added to it. Note that the probabilitiesof nodes 
orresponding to ina
tive people only needed to be
omputed on
e, sin
e they are independent of the rest of thenetwork.The 
omputation of Equation 2 
an be sped up by notingthat, after fa
toring, all terms involving the Yk's are 
on-stant throughout a run, and so these terms and their 
om-3This is the number of people left after we removed anyonewho rated fewer than ten movies, rated movies only afterSeptember 1996, or gave the same rating to all movies.

binations only need to be 
omputed on
e. Further, sin
e ina single sear
h step only one Mi 
hanges, most of the re-sults of one step 
an be reused in the next, greatly speedingup the sear
h pro
ess. With these optimizations, we wereable to measure the e�e
t of over 10,000 single 
hanges inM per se
ond, on a 1 GHz Pentium III ma
hine. In pre-liminary experiments, we found relaxation labeling 
arriedout this way to be several orders of magnitude faster thanGibbs sampling; we expe
t that it would also be mu
h fasterthan the more eÆ
ient version of Gibbs sampling proposedin He
kerman et al. [17℄.4 The relaxation labeling pro
esstypi
ally 
onverged quite qui
kly; few nodes ever requiredmore than a few updates.
4.4 Model AccuracyTo test the a

ura
y of our model, we 
omputed the esti-mated probability P (XijXk;Y;M) for ea
h person Xi withM =M0 andXk = ;. We measured the 
orrelation betweenthis and the a
tual value of Xi in the test set, over all movies,over all people.5 (Note that, sin
e the 
omparison is withtest set values, we did not expe
t to re
eive ratings fromina
tive people, and therefore P (XijY) = 0 for them.) Theresulting 
orrelation was 0.18. Although smaller than desir-able, this 
orrelation is remarkably high 
onsidering that theonly input to the model was the movie's genre. We expe
tthe 
orrelation would in
rease if a more informative set ofmovie attributes Y were used.
4.5 Network ValuesFor the �rst movie in the test set (\Spa
e Jam"), we mea-sured the network value for all 9585 a
tive people6 in thefollowing s
enario (see Equations 4 and 9): r0 = 1, r1 = 0:5,
 = 0:1, � = 1:5, and M = M0. Figure 2 shows the 500highest network values (out of 9585) in de
reasing order.The unit of value in this graph is the average revenue thatwould be obtained by marketing to a 
ustomer in isolation,without 
osts or dis
ounts. Thus, a network value of 20 fora given 
ustomer implies that by marketing to her we es-sentially get free marketing to an additional 20 
ustomers.The s
ale of the graph depends on the marketing s
enario(e.g., network values in
rease with �), but the shape gen-erally remains the same. The �gure shows that a few usershave very high network value. This is the ideal situation forthe type of targeted viral marketing we propose, sin
e we
an e�e
tively market to many people while in
urring onlythe expense of marketing to those few. A good 
ustomerto market to is one who: (1) is likely to give the produ
ta high rating, (2) has a strong weight in determining therating predi
tion for many of her neighbors, (3) has manyneighbors who are easily in
uen
ed by the rating predi
tionthey re
eive, (4) will have a high probability of pur
hasingthe produ
t, and thus will be likely to a
tually submit a rat-ing that will a�e
t her neighbors, and �nally (5) has manyneighbors with the same four 
hara
teristi
s outlined above,4In our experiments, one Gibbs 
y
le of sampling all thenodes in the network took on the order of a �ftieth of ase
ond. The total runtime would be this value multipliedby the number of sampling iterations desired and by thenumber of sear
h steps.5Simply measuring the predi
tive error rate would not bevery useful, be
ause a very low error rate 
ould be obtainedsimply by predi
ting that no one sees the movie.6Ina
tive people always have a network value of zero.
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Figure 2: Typi
al distribution of network values.and so on re
ursively. In the movie domain, these 
orre-spond to �nding a person who (1) will enjoy the movie, (2)has many 
lose friends, who are (3) easily swayed, (4) willvery likely see the movie if marketed to, and (5) has friendswhose friends also have these properties.
4.6 Marketing ExperimentsWe 
ompared three marketing strategies: mass marketing,traditional dire
t marketing, and the network-based market-ing method we proposed in Se
tion 2. In mass marketing,all 
ustomers were marketed to (Mi = 1 for all i). In di-re
t marketing, a 
ustomer Xi was marketed to (Mi = 1) ifand only if ELPi(Xk;Y;M0) > 0 (see Equation 4) ignor-ing network e�e
ts (i.e., using the network-less probabilitiesP (XijY;M)). For our approa
h, we 
ompared the threeapproximation methods proposed in Se
tion 2: single pass,greedy sear
h and hill-
limbing. Figure 3 
ompares thesethree sear
h types and dire
t marketing on three di�erentmarketing s
enarios. For all s
enarios, r0 = 1, whi
h meanspro�t numbers are in units of number of movies seen. Inthe free movie s
enario r1 = 0, and in the dis
ounted movies
enario r1 = 0:5. In both of these s
enarios we assumed a
ost of marketing of 10% of the revenue from a single sale:
 = 0:1. In the advertising s
enario no dis
ount was of-fered (r1 = 1), and a lower 
ost of marketing was assumed(
orresponding, for example, to online marketing instead ofphysi
al mailings): 
 = 0:02. Noti
e that all the marketinga
tions 
onsidered were e�e
tively in addition to the (pre-sumably mass) marketing that was a
tually 
arried out forthe movie. The average number of people who saw a moviegiven only this marketing (i.e., with M = M0) was 311.The baseline pro�t would be obtained by subtra
ting fromthis the (unknown) original 
osts. The 
orre
t � for ea
hmarketing s
enario was unknown, so we present the resultsfor a range of values. We believe we have 
hosen plausibleranges, with a free movie providing more in
entive than adis
ount, whi
h in turn provides more in
entive than simplyadvertising. Xk = ; in all experiments.In all s
enarios, mass marketing resulted in negative prof-its. Not surprisingly, it fared parti
ularly poorly in thefree and dis
ounted movie s
enarios, produ
ing pro�ts whi
hranged from �2057 to �2712. In the advertising s
enario,mass marketing resulted in pro�ts ranging from �143 to�381 (depending on the 
hoi
e of �). In the 
ase of a free

movie o�er, the pro�t from dire
t marketing 
ould not bepositive, sin
e without network e�e
ts we were guaranteedto lose money on anyone who saw a movie for free. Figure 3shows that our method was able to �nd pro�table market-ing opportunities that were missed by dire
t marketing. Forthe dis
ounted movie, dire
t marketing a
tually resulted ina loss of pro�t. A 
ustomer that looked pro�table on herown may a
tually have had a negative overall value. Thissituation demonstrates that not only 
an ignoring networke�e
ts 
ause missed marketing opportunities, but it 
an alsomake an unpro�table marketing a
tion look pro�table. Inthe advertising s
enario, for small � our method in
reasedpro�ts only slightly, while dire
t marketing again redu
edthem. Both methods improved with in
reasing �, but ourmethod 
onsistently outperformed dire
t marketing.As 
an be seen in Figure 3, greedy sear
h produ
ed re-sults that were quite 
lose to those of hill 
limbing. Theaverage di�eren
e between greedy and hill-
limbing pro�ts(as a per
entage of the latter) in the three marketing s
e-narios was 9.6%, 4.0%, and 0.0% respe
tively. However, asseen in Figure 3, the runtimes di�ered signi�
antly, withhill-
limbing time ranging from 4.6 minutes to 42.1 minuteswhile greedy-sear
h time ranged from 3.8 to 5.5 minutes.The 
ontrast was even more pronoun
ed in the advertisings
enario, where the pro�ts found by the two methods werenearly identi
al, but hill 
limbing took 14 hours to 
om-plete, 
ompared to greedy sear
h's 6.7 minutes. Single-passwas the fastest method and was 
omparable in speed to di-re
t marketing, but led to signi�
antly lower pro�ts in thefree and dis
ounted movie s
enarios.The lift in pro�t was 
onsiderably higher if all users wereassumed to be a
tive. In the free movie s
enario, the lift inpro�t using greedy sear
h was 4.7 times greater than whenthe network had ina
tive nodes. In the dis
ount and adver-tising s
enarios the ratio was 4.1 and 1.8, respe
tively. Thiswas attributable to the fa
t that the more ina
tive neighborsa node had, the less responsive it 
ould be to the network.From the point of view of an e-mer
hant applying our ap-proa
h, this suggests modifying the 
ollaborative �lteringsystem to only assign a
tive users as neighbors.
5. RELATED WORKSo
ial networks have been an obje
t of study for sometime, but previous work within so
iology and statisti
s hassu�ered from a la
k of data and fo
used almost ex
lusivelyon very small networks, typi
ally in the low tens of indi-viduals [41℄. Interestingly, the Google sear
h engine [4℄ andKleinberg's (1998) HITS algorithm for �nding hubs and au-thorities on the Web are based on so
ial network ideas. Thesu

ess of these approa
hes, and the dis
overy of widespreadnetwork topologies with nontrivial properties [42℄, has led toa 
urry of resear
h on modeling the Web as a semi-randomgraph (e.g., Kumar et al. [28℄, Barab�asi et al. [1℄). Some ofthis work might be appli
able in our 
ontext.In retrospe
t, the earliest sign of the potential of viralmarketing was perhaps the 
lassi
 paper by Milgram [31℄estimating that every person in the world is only six edgesaway from every other, if an edge between i and j means \iknows j." S
hwartz and Wood [37℄ mined so
ial relation-ships from email logs. The ReferralWeb proje
t mined a so-
ial network from a wide variety of publi
ly-available onlineinformation [24℄, and used it to help individuals �nd expertswho 
ould answer their questions. The COBOT proje
t
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Figure 3: Pro�ts and runtimes obtained using di�erent marketing strategies.gathered so
ial statisti
s from parti
ipant intera
tions in theLambdaMoo MUD, but did not expli
itly 
onstru
t a so
ialnetwork from them [21℄. A Markov random �eld formulationsimilar to Equation 2 was used by Chakrabarti et al. [6℄ for
lassi�
ation of Web pages, with pages 
orresponding to 
us-tomers, hyperlinks between pages 
orresponding to in
uen
ebetween 
ustomers, and the bag of words in the page 
orre-sponding to properties of the produ
t. Neville and Jensen[32℄ proposed a simple iterative algorithm for labeling nodesin so
ial networks, based on the naive Bayes 
lassi�er. Cookand Holder [9℄ developed a system for mining graph-baseddata. Flake et al. [13℄ used graph algorithms to mine 
om-munities from the Web (de�ned as sets of sites that havemore links to ea
h other than to non-members).Several resear
hers have studied the problem of estimatinga 
ustomer's lifetime value from data [22℄. This line of re-sear
h generally fo
uses on variables like an individual's ex-pe
ted tenure as a 
ustomer [30℄ and future frequen
y of pur-
hases [15℄. Customer networks have re
eived some atten-tion in the marketing literature [20℄. Most of these studiesare purely qualitative; where data sets appear, they are verysmall, and used only for des
riptive purposes. Kra
khardt[27℄ proposes a very simple model for optimizing whi
h 
us-tomers to o�er a free sample of a produ
t to. The model only
onsiders the impa
t on the 
ustomer's immediate friends,ignores the e�e
t of produ
t 
hara
teristi
s, assumes the rel-

evant probabilities are the same for all 
ustomers, and is onlyapplied to a made-up network with seven nodes.Collaborative �ltering systems proposed in the literaturein
lude GroupLens [35℄, PHOAKS [40℄, Siteseer [36℄, andothers. A list of 
ollaborative �ltering systems, proje
tsand related resour
es 
an be found at www.sims.berkeley.-edu/resour
es/
ollab/.
6. FUTURE WORKThe type of data mining proposed here opens up a ri
h�eld of dire
tions for future resear
h. In this se
tion webrie
y mention some of the main ones.Although the network we have mined is large by the stan-dards of previous resear
h, mu
h larger ones 
an be en-visioned. S
aling up may be helped by developing sear
hmethods spe
i�
 to the problem, to repla
e the generi
 oneswe used here. Segmenting a network into more tra
tableparts with minimal loss of pro�t may also be important.Flake et al. [13℄ provide a potential way of doing this. Arelated approa
h would be to mine subnetworks with highpro�t potential embedded in larger ones. Re
ent work onmining signi�
ant Web subgraphs su
h as bipartite 
ores,
liques and webrings (e.g., [28℄) provides a starting point.More generally, we would like to develop a 
hara
terizationof network types with respe
t to the pro�t that 
an be ob-tained in them using an optimal marketing strategy. This



www.manaraa.com

would, for example, help a 
ompany to better gauge thepro�t potential of a market before entering (or attemptingto 
reate) it.In this paper we mined a network from a single sour
e(a 
ollaborative �ltering database). In general, multiplesour
es of relevant information will be available; the Re-ferralWeb proje
t [24℄ exempli�ed their use. Methods for
ombining diverse information into a sound representation ofthe underlying in
uen
e patterns are thus an important areafor resear
h. In parti
ular, dete
ting the presen
e of 
ausalrelations between individuals (as opposed to purely 
orre-lational ones) is key. While mining 
ausal knowledge fromobservational databases is diÆ
ult, there has been mu
h re-
ent progress [10, 39℄.We have also assumed so far that the relevant so
ial net-work is 
ompletely known. In many (or most) appli
ationsthis will not be the 
ase. For example, a long-distan
e tele-phone 
ompany may know the pattern of telephone 
allsamong its 
ustomers, but not among its non-
ustomers. How-ever, it may be able to make good use of 
onne
tions be-tween 
ustomers and non-
ustomers, or to take advantageof information about former 
ustomers. A relevant ques-tion is thus: what 
an be inferred from a (possibly biased)sample of nodes and their neighbors in a network? At theextreme where no detailed information about individual in-tera
tions is available, our method 
ould be extended toapply to networks where nodes are groups of similar or re-lated 
ustomers, and edges 
orrespond to in
uen
e amonggroups.Another promising resear
h dire
tion is towards more de-tailed node models and multiple types of relations betweennodes. A theoreti
al framework for this 
ould be providedby the probabilisti
 relational models of Friedman et al. [14℄.We would also like to extend our approa
h to 
onsider multi-ple types of marketing a
tions and produ
t-design de
isions,and to multi-player markets (i.e., markets where the a
tionsof 
ompetitors must also be taken into a

ount, leading toa game-like sear
h pro
ess).This paper 
onsidered making marketing de
isions at aspe
i�
 point in time. A more sophisti
ated alternativewould be to plan a marketing strategy by expli
itly sim-ulating the sequential adoption of a produ
t by 
ustomersgiven di�erent interventions at di�erent times, and adaptingthe strategy as new data on 
ustomer response arrives. Afurther time-dependent aspe
t of the problem is that so
ialnetworks are not stati
 obje
ts; they evolve, and parti
ularlyon the Internet 
an do so quite rapidly. Some of the largestopportunities may lie in modeling and taking advantage ofthis evolution.On
e markets are viewed as so
ial networks, the inade-qua
y of random sampling for pilot tests of produ
ts sub-je
t to strong network e�e
ts (e.g., smart 
ards, video ondemand) be
omes 
lear. Developing a better methodologyfor studies of this type 
ould help avoid some expensive fail-ures.Many e-
ommer
e sites already routinely use 
ollabora-tive �ltering. Given that the infrastru
ture for data gather-ing and for inexpensive exe
ution of marketing a
tions (e.g.,making spe
i�
 o�ers to spe
i�
 
ustomers when they visitthe site) is already in pla
e, these would appear to be good
andidates for a real-world test of our method. The greatestpotential, however, may lie in knowledge-sharing and 
us-tomer review sites like epinions.
om, be
ause the intera
tion

between users is ri
her and stronger there. For example, itmay be pro�table for a 
ompany to o�er its produ
ts at aloss to in
uential 
ontributors to su
h sites. Our methodis also potentially appli
able beyond marketing, to promot-ing any type of so
ial 
hange for whi
h the relevant networkof in
uen
e 
an be mined from available data. The spreadof online intera
tion 
reates unpre
edented opportunities forthe study of so
ial information pro
essing; our work is a steptowards better exploiting this new wealth of information.
7. CONCLUSIONThis paper proposed the appli
ation of data mining to vi-ral marketing. Viewing 
ustomers as nodes in a so
ial net-work, we modeled their in
uen
e on ea
h other as a Markovrandom �eld. We developed methods for mining so
ial net-work models from 
ollaborative �ltering databases, and forusing these models to optimize marketing de
isions. Anempiri
al study using the Ea
hMovie 
ollaborative �lteringdatabase 
on�rmed the promise of this approa
h.
8. REFERENCES[1℄ A. L. Barab�asi, R. Albert, and H. Jong. S
ale-free
hara
teristi
s of random networks: The topology ofthe World Wide Web. Physi
a A, 281:69{77, 2000.[2℄ J. Besag. Spatial intera
tion and the statisti
alanalysis of latti
e systems. Journal of the RoyalStatisti
al So
iety, Series B, 36:192{236, 1974.[3℄ J. S. Breese, D. He
kerman, and C. Kadie. Empiri
alanalysis of predi
tive algorithms for 
ollaborative�ltering. In Pro
eedings of the Fourteenth Conferen
eon Un
ertainty in Arti�
ial Intelligen
e, Madison, WI,1998. Morgan Kaufmann.[4℄ S. Brin and L. Page. The anatomy of a large-s
alehypertextual Web sear
h engine. In Pro
eedings of theSeventh International World Wide Web Conferen
e,Brisbane, Australia, 1998. Elsevier.[5℄ B. Cestnik. Estimating probabilities: A 
ru
ial task inma
hine learning. In Pro
eedings of the NinthEuropean Conferen
e on Arti�
ial Intelligen
e, pages147{149, Sto
kholm, Sweden, 1990. Pitman.[6℄ S. Chakrabarti, B. Dom, and P. Indyk. Enhan
edhypertext 
ategorization using hyperlinks. InPro
eedings of the 1998 ACM SIGMOD InternationalConferen
e on Management of Data, pages 307{318,Seattle, WA, 1998. ACM Press.[7℄ R. Chellappa and A. K. Jain, editors. Markov RandomFields: Theory and Appli
ation. A
ademi
 Press,Boston, MA, 1993.[8℄ D. M. Chi
kering and D. He
kerman. A de
isiontheoreti
 approa
h to targeted advertising. InPro
eedings of the Sixteenth Annual Conferen
e onUn
ertainty in Arti�
ial Intelligen
e, Stanford, CA,2000. Morgan Kaufmann.[9℄ D. J. Cook and L. B. Holder. Graph-based datamining. IEEE Intelligent Systems, 15:32{41, 2000.[10℄ G. F. Cooper. A simple 
onstraint-based algorithm foreÆ
iently mining observational databases for 
ausalrelationships. Data Mining and Knowledge Dis
overy,1:203{224, 1997.[11℄ P. Domingos and M. Pazzani. On the optimality of thesimple Bayesian 
lassi�er under zero-one loss. Ma
hineLearning, 29:103{130, 1997.



www.manaraa.com

[12℄ R. Dye. The buzz on buzz. Harvard Business Review,78(6):139{146, 2000.[13℄ G. W. Flake, S. Lawren
e, and C. L. Giles. EÆ
ientidenti�
ation of Web 
ommunities. In Pro
eedings ofthe Sixth ACM SIGKDD International Conferen
e onKnowledge Dis
overy and Data Mining, pages150{160, Boston, MA, 2000. ACM Press.[14℄ N. Friedman, L. Getoor, D. Koller, and A. Pfe�er.Learning probabilisti
 relational models. InPro
eedings of the Sixteenth International JointConferen
e on Arti�
ial Intelligen
e, pages 1300{1307,Sto
kholm, Sweden, 1999. Morgan Kaufmann.[15℄ K. Gelbri
h and R. Nakhaeizadeh. Value Miner: Adata mining environment for the 
al
ulation of the
ustomer lifetime value with appli
ation to theautomotive industry. In Pro
eedings of the EleventhEuropean Conferen
e on Ma
hine Learning, pages154{161, Bar
elona, Spain, 2000. Springer.[16℄ S. Geman and D. Geman. Sto
hasti
 relaxation, Gibbsdistributions, and the Bayesian restoration of images.IEEE Transa
tions on Pattern Analysis and Ma
hineIntelligen
e, 6:721{741, 1984.[17℄ D. He
kerman, D. M. Chi
kering, C. Meek,R. Rounthwaite, and C. Kadie. Dependen
y networksfor inferen
e, 
ollaborative �ltering, and datavisualization. Journal of Ma
hine Learning Resear
h,1:49{75, 2000.[18℄ J. Herlo
ker, J. Konstan, A. Bor
hers, and J. Riedl.An algorithmi
 framework for performing
ollaborative �ltering. In Pro
eedings of the 1999Conferen
e on Resear
h and Development inInformation Retrieval, Berkeley, CA, 1999.[19℄ A. M. Hughes. The Complete Database Marketer:Se
ond-Generation Strategies and Te
hniques forTapping the Power of your Customer Database. Irwin,Chi
ago, IL, 1996.[20℄ D. Ia
obu

i, editor. Networks in Marketing. Sage,Thousand Oaks, CA, 1996.[21℄ C. L. Isbell, Jr., M. Kearns, D. Korman, S. Singh, andP. Stone. Cobot in LambdaMOO: A so
ial statisti
sagent. In Pro
eedings of the Seventeenth NationalConferen
e on Arti�
ial Intelligen
e, pages 36{41,Austin, TX, 2000. AAAI Press.[22℄ D. R. Ja
kson. Strategi
 appli
ation of 
ustomerlifetime value in dire
t marketing. Journal ofTargeting, Measurement and Analysis for Marketing,1:9{17, 1994.[23℄ S. Jurvetson. What exa
tly is viral marketing? RedHerring, 78:110{112, 2000.[24℄ H. Kautz, B. Selman, and M. Shah. ReferralWeb:Combining so
ial networks and 
ollaborative �ltering.Communi
ations of the ACM, 40(3):63{66, 1997.[25℄ R. Kindermann and J. L. Snell. Markov RandomFields and Their Appli
ations. Ameri
anMathemati
al So
iety, Providen
e, RI, 1980.[26℄ J. M. Kleinberg. Authoritative sour
es in ahyperlinked environment. In Pro
eedings of the NinthAnnual ACM-SIAM Symposium on Dis
reteAlgorithms, pages 668{677, Baltimore, MD, 1998.ACM Press.[27℄ D. Kra
khardt. Stru
tural leverage in marketing. InD. Ia
obu

i, editor, Networks in Marketing, pages

50{59. Sage, Thousand Oaks, CA, 1996.[28℄ R. Kumar, P. Raghavan, S. Rajagopalan, andA. Tomkins. Extra
ting large-s
ale knowledge basesfrom the Web. In Pro
eedings of the Twenty-FifthInternational Conferen
e on Very Large Databases,pages 639{650, Edinburgh, S
otland, 1999. MorganKaufmann.[29℄ C. X. Ling and C. Li. Data mining for dire
tmarketing: Problems and solutions. In Pro
eedings ofthe Fourth International Conferen
e on KnowledgeDis
overy and Data Mining, pages 73{79, New York,NY, 1998. AAAI Press.[30℄ D. R. Mani, J. Drew, A. Betz, and P. Datta. Statisti
sand data mining te
hniques for lifetime valuemodeling. In Pro
eedings of the Fifth ACM SIGKDDInternational Conferen
e on Knowledge Dis
overy andData Mining, pages 94{103, New York, NY, 1999.ACM Press.[31℄ S. Milgram. The small world problem. Psy
hologyToday, 2:60{67, 1967.[32℄ J. Neville and D. Jensen. Iterative 
lassi�
ation inrelational data. In Pro
eedings of the AAAI-2000Workshop on Learning Statisti
al Models fromRelational Data, pages 42{49, Austin, TX, 2000.AAAI Press.[33℄ L. Pelkowitz. A 
ontinuous relaxation labelingalgorithm for Markov random �elds. IEEETransa
tions on Systems, Man and Cyberneti
s,20:709{715, 1990.[34℄ G. Piatetsky-Shapiro and B. Masand. Estimating
ampaign bene�ts and modeling lift. In Pro
eedings ofthe Fifth ACM SIGKDD International Conferen
e onKnowledge Dis
overy and Data Mining, pages185{193, San Diego, CA, 1999. ACM Press.[35℄ P. Resni
k, N. Ia
ovou, M. Su
hak, P. Bergstrom, andJ. Riedl. GroupLens: An open ar
hite
ture for
ollaborative �ltering of netnews. In Pro
eedings of theACM 1994 Conferen
e on Computer SupportedCooperative Work, pages 175{186, New York, NY,1994. ACM Press.[36℄ J. Ru
ker and M. J. Polan
o. Siteseer: Personalizednavigation for the web. Communi
ations of the ACM,40(3):73{76, 1997.[37℄ M. F. S
hwartz and D. C. M. Wood. Dis
overingshared interests using graph analysis. Communi
ationsof the ACM, 36(8):78{89, 1993.[38℄ C. Shapiro and H. R. Varian. Information Rules: AStrategi
 Guide to the Network E
onomy. HarvardBusiness S
hool Press, Boston, MA, 1999.[39℄ C. Silverstein, S. Brin, R. Motwani, and J. Ullman.S
alable te
hniques for mining 
ausal stru
tures. DataMining and Knowledge Dis
overy, 4:163{192, 2000.[40℄ L. Terveen, W. Hill, B. Amento, D. M
Donald, andJ. Creter. PHOAKS: A system for sharingre
ommendations. Communi
ations of the ACM,40(3):59{62, 1997.[41℄ S. Wasserman and K. Faust. So
ial Network Analysis:Methods and Appli
ations. Cambridge UniversityPress, Cambridge, UK, 1994.[42℄ D. J. Watts and S. H. Strogatz. Colle
tive dynami
s of\small-world" networks. Nature, 393:440{442, 1998.


